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ABSTRACT

Nearly a half-century of biomedical research has revealed methods and mechanisms by which an oscillator with bistable limit cycle kinetics
can be stopped using critical stimuli applied at a specific phase. Is it possible to construct a stimulus that stops oscillation regardless of the
phase at which the stimulus is applied? Using a radial isochron clock model, we demonstrate the existence of such stimulus waveforms, which
can take on highly complex shapes but with a surprisingly simple mechanism of rhythm suppression. The perturbation, initiated at any phase
of the limit cycle, first corrals the oscillator to a narrow range of new phases, then drives the oscillator to its phase singularity. We further
constructed a library of waveforms having different durations, each achieving phase-agnostic suppression of rhythm but with varying rates of
phase corralling prior to amplitude suppression. The optimal stimulus energy to achieve phase-agnostic suppression of rhythm is dependent
on the rate of phase corralling and the configuration of the phaseless set. We speculate that these results are generic and suggest the existence
of stimulus waveforms that can stop the rhythm of more complex oscillators irrespective of the applied phase.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0026143

Regular clocklike rhythms are commonly observed in biology
and medicine. In many cases, the oscillations can be halted if
perturbed at a specific time with just the right strength. This phe-
nomenon is known to be phase-specific, i.e., dependent on the
timing of the stimulus within the cycle. In this study, we dis-
cover ways to stop a simple clock irrespective of stimulus timing.
We explore features of the stimulus waveform that switch off the
oscillation at any phase of initial impact, by first corralling the
oscillator to a narrow range of new phases and then by perturbing
the oscillator to its phase singularity. This mechanism appears to
be generic and suggests the existence of stimulus waveforms that
can stop the rhythm of more complex oscillators irrespective of
the applied phase.

INTRODUCTION

Oscillatory behaviors and generators can be seen across all biol-
ogy, from the cyclical patterns seen in certain molecular pathways
and transcriptional feedback loops to the rhythms of pacemakers

in the brain and the heart. Over the past few decades, a great deal
of work has been done to study the effect of stimulation on these
oscillators, quantifying and modeling the dynamics and mecha-
nisms involved.1,2 One particularly interesting finding is that a brief
shock with a specific strength (within a narrow range) and given at
a specific time (within a narrow window of phases) is capable of
suppressing oscillatory behavior.1,3 Most of this work used simple
rectangular pulses as the stimulus.

Previous studies have explored the use of non-rectangular
waveforms to achieve efficient oscillatory suppression.4,5 Given that
non-traditional waveforms are often more energetically efficient,6,7

the question arises regarding whether or not the use of non-
traditional waveforms may also open the window of successful
phases such that the stimulus generated could be given at any arbi-
trary phase and still successfully suppress the oscillatory behavior.

METHODS

We define a stimulus waveform as phase-agnostic if it drives
the oscillator to its phaseless set regardless of the phase at which the
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stimulus is applied. In order to explore this concept, we analyzed a
simple model of the radial isochron clock. The radial isochron clock
is a simple mathematical model of pacemaker neurons. This model
has been modified to not only have the pacemaker component, in
which the system revolves around the origin along the unit circle,
but also a stable fixed point at the origin,

dr

dt
= εu(t)sin(θ) + r ∗ (1 − r)(r − a),

dθ

dt
= 1 +

εu(t)cos(θ)

r
,

where the parameter a defines the radius of the unstable limit cycle,
specifying the boundary of the phaseless set for the stable attract-
ing cycle at r = 1, and u(t) represents an exogenous stimulus.8 The
unstable limit cycle was set at a = 0.25 unless otherwise specified,
while ε = 5. We define “energy” optimization by using the L2-norm
of the stimulus:

∫ µ2dt.

In each of our figures, we are superimposing the trajectories of
independent and uncoupled radial isochron clocks onto one image
for visualization purposes. Each clock is starting from a unique
phase in order to demonstrate the effect of a single stimulus on
different phases. In Fig. 1, a single rectangular stimulus is applied
upward in the y-direction, at different phases of the stable limit cycle.
When the stimulus, a positive rectangular pulse, is applied at the
bottom of the stable limit cycle, as seen with trajectory B, the clock
crosses the unstable limit cycle into the attraction basin of the stable
fixed point at the center of the system. When the stimulus is applied
at other phases, as seen with trajectories A and C, the clocks do not
cross the unstable limit cycle and thus return to the stable limit cycle.

The aim of this study is to find an optimal stimulus wave-
form, u(t), which can cause every clock to transition from the stable
limit cycle across the unstable limit cycle toward the stable fixed
point. Due to the difficulties in finding an analytical solution using
variational calculus, we have chosen to use an extrema-featured
stochastic hill-climbing approach developed previously,7 which we
call an “extrema distortion algorithm” (EDA).

FIG. 1. Illustration of a phase-specific stimulus pulse that stops the radial
isochron clock. A stimulus (bottom) is administered at three different phases of
the cycle (A–C). A and C: the stimulus perturbs the system, which returns to its
stable limit cycle oscillation (solid circle) and B: the stimulus drives the system
across the unstable limit cycle (dashed circle) to the stable fixed point. The trajec-
tories are plotted both in state space (left) and in the y-coordinate in time (right).
In the state space, a horizontal dotted line has been plotted to represent where
the phase, θ , is 0. A control trajectory, where no stimulus is introduced, is also
plotted (light gray) for reference in the time plots.

EDA treats the system as a black box, and it leverages stochastic
search techniques, specifically a hill-climbing approach, to itera-
tively find better solutions. This approach works by taking a ran-
domly generated starting waveform and iteratively distorting the
waveform by adding noise to both the amplitude of the extrema
points (local minimum and maximum amplitudes) and the inter-
vals between them. After the distortion, each new waveform is
applied to the system and evaluated for both its ability to cause
the desired outcome (e.g., suppression of oscillation) and its energy
requirements, which in our case was computed using the L2-norm
of the stimulus. This process is conducted several times using the
same starting seed, and the best waveform is then used for the
next iteration. We demonstrated that this technique matched closely
with results obtained using gradient-based techniques applied to the
FitzHugh–Nagumo and Hodgkin–Huxley models.7

We initially restricted the duration of the stimulus to one cycle
length of the radial isochron clock. In order to determine whether
or not the stimulus duration affected the success of the stimulus in
both energy consumption and success of opening the phase win-
dow, we also ran the same experiment for stimulus waveforms with
a 0.5-cycle length, 0.75-cycle length, and two-cycle length durations.
Furthermore, we analyzed the effect of the size of the unstable limit
cycle on both the success rates of opening the phase window and the
energy requirements necessary for complete opening. We also var-
ied the radius of unstable limit cycle a, between 0 and 1, running 10
iterations of EDA for each experimental setup.

As a point of comparison, we constructed grid searches to
determine if rectangular pulses alone could fully open the phase
window. Setting the unstable limit cycle at a = 0.25, we found the
optimal parameter set for both two-pulse and three-pulse stimuli. In
both searches, the amplitudes of the pulses were varied from −10 to
10, tested at 0.1 increments, and the gap between the pulses was var-
ied at 0.1-time unit (equivalent to 0.016 cycle lengths) increments
as well. We maintained a 0.1-time unit duration for each pulse to
constrain the search space. The maximum duration between and
including the two- or three-pulse trains was limited to one cycle
length. The Texas Advanced Computing Center at the University
of Texas at Austin was used to run these grid searches in parallel.

We have also tested these concepts on a more biologically rele-
vant computational model: the Hodgkin–Huxley model of neuronal
response in giant squid axons to exogenous stimulation.9 Because
we are working specifically with bistable systems, we have added
a persistent current (9 µA/s) to the Hodgkin–Huxley model in
order to push it into the bistable regime which we have used in a
previous study.10 Our experiments were conducted across 152 oscil-
lators, each with a unique starting location on the limit cycle. This
bistable Hodgkin–Huxley had a 15.2-ms cycle length. Our algorithm
searched for an optimal stimulus that was equivalent to one-cycle
length in duration.

RESULTS

Finding phase-agnostic stimulus waveforms

Figure 2 is an example of a complex waveform that suppresses
the radial isochron clock irrespective of the phase of stimulation. As
noted previously, we are applying the stimulus to 32 distinct, inde-
pendent, and identical clocks, each starting at a different phase on
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FIG. 2. Example of rhythm suppression by a complex stimulus waveform initiated
at different phases of the limit cycle. The stimulus was optimized for energy effi-
ciency using EDA. The clocks in state space (top) are depicted for specific time
points (A, B, and C) as marked in both the system response (middle) and the
stimulus (bottom) time plots.

the attracting limit cycle, and in each instance, the oscillatory behav-
ior is suppressed. Here, the trajectories and locations of the clocks
in state space and time have been superimposed for visualization
purposes. The L2-norm of this stimulus is 0.2151.

We can divide the stimulus into roughly three sections sepa-
rated by the time points A, B, and C in Fig. 2. One could view each
of these sections as distinct non-rectangular pulses. The first portion
of the stimulus causes a large perturbation to the system such that if
we plot the phase of the oscillator before the stimulus against the
phase of the oscillator at time A, this portion of the stimulus causes
the widely disparate phases of all the individual clocks to collapse
into a small phase region. This strong shift in phases can be seen
clearly as this first part of the stimulus displaces all the clocks past
the unstable limit cycle (top panel A).

During the second portion of the stimulus, the natural rota-
tion and attraction of the points toward the stable limit cycle corrals
the clocks into a narrower phase range. The maximal impact of this
portion is timed for when the variance between the clocks is largest
parallel to the y-axis, causing maximal reduction in variance by the
time the pulse finishes (B). Before the stimulus begins, the clocks
are all spread out around the stable limit cycle. After these first two
sections are completed, the clocks are tightly packed into a much
narrower phase region of the stable limit cycle. The first two sec-
tions of the stimulus, therefore, exert a corralling effect on the clocks’
phases, enabling the final section to displace all the clocks across
the unstable limit cycle into the attraction basin of the stable fixed
point (C).

Figure 3 plots the data from a different perspective by examin-
ing the variances of the clock locations along both the x- and y-axis,
as well as the mean of the radial coordinate. Here, we can see more

FIG. 3. The effect of the stimulus (µ) shown on the variance in Cartesian coordi-
nates of the clocks (σ x

2 and σ y
2), and the mean radius when examining polar

coordinates (r̄). The effect of the stimulus can be broken into two parts: the
corralling interval (c) and the suppressing interval (s).

clearly that the first two portions of the stimulus cause a collapse of
the variances in x and y, concurrent with the corralling of every clock
phase into a smaller region in the state space. The final component
of the stimulus then causes the fall in mean radial coordinate, knock-
ing the clocks across the unstable limit cycle and into the attraction
basin of the stable fixed point.

This resulting mechanism can also be seen in the optimal two-
pulse and three-pulse rectangular stimulus waveforms that we found
through our systematic grid search as seen in Figs. 4 and 5. A strong
pulse is first given to achieve a narrow range of new phases regard-
less of the applied phase, and a weaker second stimulus is then given
at the critical phase required to push the clocks past the unstable
limit cycle into the attraction basin of the stable fixed point. With
two pulses, a much stronger stimulus is required to corral the clocks
into a narrow phase (L2-norm of 3.342), compared to three pulses
(L2-norm of 1.012), in which the first two pulses corral the clocks
more gradually and efficiently to achieve the same outcome. As a
point of comparison, the optimal waveform achieved using EDA,
shown in Fig. 2, has an L2-norm of 0.2151.

Adjusting system and stimulus parameters

Given that the first part of the stimulus corrals the clocks into
a small phase region, we would expect that the more time given, up
to a certain point, the more gradually this corralling process could
take place, and thus less energy would be required. Moreover, this
fundamental mechanism of a phase reset followed by a suppres-
sive stimulus should also work regardless of how wide or narrow
the unstable limit cycle is. If the unstable limit cycle is larger, or
further away from the stable fixed point, the corralling of clocks is
not required to the same degree as if the unstable limit cycle were
smaller.

We tested these hypotheses by using EDA to find both optimal
stimuli under different cycle length constraints as well as under dif-
ferent unstable limit cycle paradigms. As seen in Fig. 6, the L2-norm
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FIG. 4. Two-pulse stimulation (left) requires
more energy than three-pulse stimulation
(right). Phase amplitude resetting maps are
shown (top) for specified time markers seen
in both the system’s response (middle) and
the stimulus (bottom) plots. Note that the
two-pulse stimulus spans one-cycle length,
while the three-pulse stimulus spans only
0.71-cycle lengths.

of the optimal stimulus improves when increasing the stimulus
duration (i.e., from half-cycle to two-cycle length stimuli) and when
widening the unstable limit cycle. As the stimulus duration length-
ens, EDA finds a solution that leverages the attraction of the stable
limit cycle to help corral the clocks further before the weaker sup-
pression stimulus is applied to knock them into the stable fixed
point’s basin of attraction. Furthermore, when the unstable limit
cycle is widened, the clocks do not need to be corralled to the same
degree, and thus less energy is required.

Hodgkin–Huxley neuronal model

While the radial isochron clock is an interesting model, it is
a very simplistic model of neuronal activity. In order to observe
whether the mechanisms found in the radial isochron clock are
applicable to a more realistic neuronal oscillator, we carried out the
same experiments in the Hodgkin–Huxley model. The results are
seen in Fig. 7. We have plotted the voltage membrane’s response,
V(t), to the stimulus, µ(t), as well as the variance of each of the
state variables and the percentage of the oscillators that have been
suppressed. The state variables m, n, and h are dimensionless quan-
tities between 0 and 1 that represent the level of sodium chan-
nel activation, potassium channel activation, and sodium channel

FIG. 5. Findings for optimal two-pulse and three-pulse stimuli (top) also demon-
strate that the stimulus first reduces the variances (second and third row), followed
by suppression of the radius (bottom). The corresponding corralling interval (c)
and the suppressing interval (s) are shown above the stimulus.

inactivation, respectively. The L2-norm of the stimulus here is
954.57 µJ/cm2.

DISCUSSION

While there are exceptions,1,11 the rhythmic activity of many
biological oscillators can be switched to an arrhythmic state in
response to a stimulus pulse timed within a narrow phase window.
In this study, we have relaxed the constraint of perturbing with a
single pulse to develop more complex waveforms that suppress oscil-
latory activity regardless of the phase at which the stimulus is given.
Our results reveal that the phase-agnostic stimulus suppresses oscil-
lation in two distinct sequences. First, the clock’s initial phase is
shifted by the stimulus to a new phase within a narrow window. Fol-
lowing this corralling interval, the stimulus then perturbs the system
across the unstable limit cycle. We find that these two sequences
can be achieved using two or more rectangular pulses. Relaxing
the constraint from rectangular pulses to more complex waveforms
allows for large energy savings in the form of reduced L2-norm.

FIG. 6. The optimal stimuli of half-cycle length (triangles), one-cycle length (dia-
monds), and two-cycle lengths (circles) are plotted across varying widths of
the unstable limit cycle (left). A few system responses and stimulus waveforms
are displayed on the right: (A) one-cycle length, a= 0.05, (B) one-cycle length,
a= 0.25, (C) two-cycle length, a= 0.25, and (D) half-cycle length, a= 0.25.
The corralling interval (c) and the suppressing interval (s) are marked for each
stimulus.
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FIG. 7. The phase-agnostic optimal waveform for the Hodgkin–Huxley model is
shown with the system’s response across ten different oscillators starting at differ-
ent phases. The variances for each state variable are also shown, demonstrating
the corralling portions of the stimulus. Instead of plotting mean radial-coordinates,
we plot the number of oscillators that are within the basin of attraction at each
moment in time during the stimulus. One cycle length of the Hodgkin–Huxley
model has been marked with asterisks.

Examination of two-pulse stimulation vs three-pulse stimula-
tion was instructive. Visualizing the effect of the stimulus on super-
imposed clocks in state space, we observe that the use of only two
pulses limits the corralling portion of the stimulus to only one pulse.
By allowing for a second pulse to aid in the corralling of the clocks,
the three-pulse stimulus leverages the natural attraction of the stable
limit cycle to further bring the clocks into a narrow phase region,
thus requiring much less energy. Examining the complex waveform
discovered through EDA, we can see that even more energy is saved
by using waveforms that enable the clocks to move more closely
along the limit cycle while corralling to the narrow range of new
phases, exploiting the intrinsic dynamics of the attracting limit cycle.
The effect of a longer duration length stimulus confirms this finding
even more when observing the reduction in L2-norm of the two-
cycle length stimulus as compared to the one-cycle length stimulus
and half-cycle length stimulus.

If the unstable limit cycle is large, the requirement to corral the
clocks is relaxed, while a narrow unstable limit cycle requires more
energy in order to tightly pack the clocks into a narrow phase region.
In the radial isochron clock, this unstable limit cycle is symmetrical

across all dimensions. Most real systems in biology are governed by
high dimensional asymmetrical dynamics. It will be interesting to
investigate more complex models. How do symmetry and shape of
the unstable limit cycle affect access and efficiency of suppressing
oscillation using phase-agnostic perturbations?

An initial analysis of this can be seen in the Hodgkin–Huxley
model. One unique feature of this result is that the corralling of the
clocks as seen in the variances of the state variables occur simultane-
ously as the increase of the suppression effect as determined in the
percent of oscillators within the basin of attraction. Compared to
the radial isochron clock model where the two different intervals are
more distinct, here, they overlap. In Paper II,12 we further examine
this phenomenon in other clinically relevant systems.

The use of double-pulse stimulation has been examined pre-
viously in systems of coupled oscillators. Tass applied double-
pulse stimuli to desynchronize a group of coupled synchronized
oscillators,13 using a similar mechanism to what we have observed.
The first pulse reset the collective oscillations irrespective of the ini-
tial conditions, while the second pulse caused the desynchronization
by targeting the vulnerable state achieved by the first pulse. The
two pulses successfully desynchronize a coupled oscillator system
regardless of when the stimulus is given. It will be interesting to
investigate whether similar desynchronization can be induced with
even greater efficiency using more complex waveforms.

By incorporating more pulses and new waveform shapes, we
open further discovery of efficient stimuli that suppress oscillations
when given at any phase. Further research will be necessary to deter-
mine whether the mechanisms illustrated in this report are generic
and applicable to biological systems or if modifications are neces-
sary to understand whether phase-agnostic solutions exist for more
complex systems. Given the recent interest in electrical stimula-
tion, or electroceutical, therapies to disrupt pathological oscillations
in the brain,14,15 a better understanding of the mechanisms behind
phase-agnostic waveforms may provide researchers and clinicians
with improved therapeutic protocols for treatment. In Paper II,12 we
examine more closely whether the mechanisms revealed here apply
to more clinically relevant systems.
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