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ABSTRACT

For over a century, physiological studies have shown that precisely timed pulses can switch off a biological oscillator. This empiric finding has
shaped our mechanistic understanding of how perturbations start, stop, and reset biological oscillators and has led to treatments that suppress
pathological oscillations using electrical pulses given within specified therapeutic phase windows. Here, we present evidence, using numerical
simulations of models of epileptic seizures and reentrant tachycardia, that the phase window can be opened to the entire cycle using novel
complex stimulus waveforms. Our results reveal that the trajectories are displaced by such phase-agnostic stimuli off the oscillator’s limit cycle
and corralled into a region where oscillation is suppressed, irrespective of the phase at which the stimulus was applied. Our findings suggest
the need for broadening theoretical understanding of how complex perturbing waveforms interact with biological oscillators to access their
arrhythmic states. In clinical practice, oscillopathies may be treated more effectively with non-traditional stimulus waveforms that obviate the
need for phase specificity.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0032974

Clocklike rhythms are ubiquitous in biology and medicine, and in
many cases, the rhythm can be stopped if perturbed at a specific
time within the cycle, i.e., the stimulus pulse is phase-specific. In
our companion article, we discover ways to stop a simple clock
irrespective of stimulus timing; using non-traditional stimulus
waveforms, suppression of rhythm is phase-agnostic. In this arti-
cle, we apply our framework to biologically relevant models and
find phase-agnostic stimuli that suppress pathological oscilla-
tions in the models of epileptic seizures and reentrant tachycar-
dia. We speculate that in clinical practice, oscillopathies may be
treated more effectively with non-traditional stimulus waveforms
that obviate the need for phase specificity.

INTRODUCTION

Oscillatory dynamics are pervasive in biology and medicine,
regulating vital physiological processes with cyclic activities across

broad time scales. The mechanisms by which perturbing signals
start, stop, and reset biological rhythms provide insights into
key regulatory principles governing normal neural, cardiac, and
metabolic states, as well as pathogenesis of aberrant oscillations, for
example, rhythmic neuronal firing underlying epileptic seizures1–3

and parkinsonian tremors,4–6 and ectopic pacemaker automaticity
underlying ventricular tachyarrhythmias and fibrillation.7,8 Many
oscillatory pathologies might be amenable to treatments that exploit
the nonlinear dynamics of the disease state, in which relatively small
inputs can switch off the undesirable oscillations. Conversely, vital
oscillators’ essential for survival must be resistant to perturbations
that suppress rhythmicity except when necessary for survival—for
example, rapidly halting breathing rhythmicity during diving or
swallowing.

For over a century, physiological studies have shown how pre-
cisely timed pulses can switch off an oscillator. Mines was among the
first to report this phenomenon in isolated perfused heart prepa-
rations, in which a relatively mild and brief myocardial electrical
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stimulus could induce ventricular fibrillation if the stimulus was
applied at a specific phase of the cardiac cycle, called the vulnerable
phase.9 Stimuli given at other phases caused only transient alter-
ations followed by resumption of the normal cardiac rhythm, with
its phase reset relative to the pre-stimulus period. The phenomenon
of stimulus-induced suppression of rhythm has been described in
many other neural,10–13 cardiac,14–17 circadian,18–20 and biochemical21

experiments. In all cases, the arrhythmia-inducing effect of the stim-
ulus is phase-specific, i.e., the stimulus must be given within a narrow
range of phases within the cycle to cause the effect.

Winfree provided a theoretical and experimental frame-
work for classifying phase resetting and annihilation of biological
rhythms.18,22–24 Responses to discrete perturbations are the basis of
analysis, with a key insight that critical stimuli can expose an oscil-
lator’s “physiological black hole” using the “singularity trap,” an
experimental protocol revealing the precise phase and intensity of
stimuli that suppress oscillation. In dynamical systems theory, these
notions arise for a class of oscillators in which a stable limit cycle
(with locally convergent trajectories) co-exists with a region bound-
ing a phaseless set.25 Critical phase-specific perturbations cause dis-
placement off the limit cycle to a region in which trajectories exhibit
arrhythmicity. The required precision of the applied stimulus, the
exact combinations of stimulus phase and strength that perturbs the
stable limit cycle into the phaseless set, is highly dependent upon
intrinsic properties of the oscillator.23 For example, in mathematical
models of neuron oscillators, changing a single bifurcation param-
eter—the leak current—can shrink or expand the region bounding
the phaseless set.26 Experimentally, this would narrow or widen the
oscillator’s phase window, i.e., the range of phases within the cycle
at which stimuli can switch off stable rhythmicity of the oscillator.
It is important to note that an oscillators’ arrhythmic state might be
highly constricted or unstable, rendering it difficult or impossible to
switch off the oscillation using phase-specific stimuli.23,27

Therefore, previous research on biological oscillators suggests
that in order to suppress rhythm by perturbing an oscillator to its
stable arrhythmic state using simple pulses, the stimulus should be
applied within a narrow phase window. Can other waveforms open
the phase window of such systems, causing the oscillator to switch
off when the stimulus is applied across larger phase segments, or
even irrespective of phase? The current study seeks to open the phase
window for switching off model biological oscillations using novel
stimulus waveforms. We use a stochastic optimization algorithm to
search for stimulus profiles that maximize the phase interval within
which stimulus initiation successfully perturbs the limit cycle to
the arrhythmic state. First, we analyze a two-dimensional model of
cellular excitation, the FitzHugh–Nagumo model,28,29 with param-
eters adjusted such that the phaseless set, bounded by an unstable
limit cycle, is a very small focus relative to the basin of attraction
to the stable limit cycle. We then investigate higher-dimensional
clinically inspired models of epilepsy and ventricular tachyarrhyth-
mias. In all studied cases, we find unique stimulus waveforms, in
which the perturbing waveform switches off the oscillation when
the stimulus is applied at any phase of the stable limit cycle. Our
findings suggest the need for broadening theoretical understand-
ing of how complex perturbing waveforms interact with biological
oscillators to access their arrhythmic states and raise the possi-
bility that in clinical practice, oscillopathies may be treated more

effectively with non-traditional stimuli that obviate the need for
phase specificity.

METHODS

We define a stimulus waveform as phase-agnostic if it drives
the oscillator to its phaseless set regardless of the phase at which the
stimulus is applied. We refer the reader to the companion article
in this issue30 for the framing of this problem in a simple mod-
ified radial isochron clock. Here, we pose this question in four
biologically relevant oscillator models.

Models

The FitzHugh–Nagumo model depicts the essential qualities
of membrane excitation and propagation related to transmembrane
sodium and potassium current flow.28,29 The state variables are unit-
less and abstract, yet they capture voltage-like and recovery dynam-
ics. The simplicity of the FitzHugh–Nagumo model allows us to gain
insight through complete visualization of the system dynamics of the
two state variables. The model equations are as follows:

ẋ1 = c

(

x2 + x1 −
x1

3

3
− r

)

+ µ,

ẋ2 = −
1

c
(x1 − a + bx2),

where µ represents the stimulus. Using model parameters a = 0.7,
b = 0.8, c = 3.0, and r = 0.342, the system exists as a Andronov–Hopf
oscillator31 with two stable states, quiescence and repetitive firing.
Model behavior was simulated in MATLAB (Mathworks, Natick,
MA) using the ode113 differential equation solver. In order to exam-
ine the effect of a stimulus at different phases across one full cycle
length, we offset the stimulus by 0.1 ms 131 times. We found optimal
biphasic rectangular pulses using a grid search, as well as more com-
plex stimulus waveforms using an extrema-based feature stochastic
hill-climbing search.

In the FitzHugh–Nagumo model, the basin of attraction for the
fixed point is relatively shallow. Solutions can spiral for a long time
along the border of the unstable limit cycle. To be more confident of
the oscillators’ state near the unstable limit cycle, we ran the system
for 100 ms, multiple cycle lengths, after the stimulus had ended.

We study a model absence seizures, developed by Suffczyn-
ski et al.,32 that describes interactions of four separate populations
of neurons: pyramidal neurons, interneurons, thalamocortical neu-
rons, and reticulothalamic neurons. Model parameters are based on
previously published experimental data from Wistar albino Glaxo
from Rijs-wijk (WAG/Rij) rats, a genetic model of absence epilepsy.
The full model in MATLAB’s Simulink can be found on ModelDB.
Cortical EEG activity, represented by the pyramidal neuron com-
partment, exhibits two distinct states: normal (spindle) activity and
spike and wave discharges with cycle length of 200 ms. Stimuli with
a duration of 400 ms oscillation were applied at 400 different phases
across the cycle in 1 ms increments.

To study the spontaneous cycling between ictal-interictal states
seen in generalized epilepsy, we use the model by Jirsa et al.1 called
the Epileptor model, developed from clinical and experimental
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animal studies. The model equations are as follows:

ẋ1 = y1 − f1(x1, x2) − z + Iext1,

ẏ1 = c1 − d1x1
2 − y1,

ż =
{

r[s(x1 − x0) − z − 0.1z7] if z < 0,
r[s(x1 − x0) − z] if z ≥ 0,

ẋ2 = −y1 + x2 − x2
3 + Iext2 + 0.002g − 0.3(z − 3.5),

ẏ2 =
1

τ2

(−y2 + f2(x2)),

g =
∫ t

t0

e−γ (t−τ )dτ ,

f1(x1, x2) =
{

a1x1
3 − b1x1

2 if x1 < 0,
−[m − x2 + 0.6(z − 4)2]x1 if x1 ≥ 0,

f2(x1, x2) =
{

0 if x2 < −0.25,
a2(x2 + 0.25) if x2 ≥ −0.25,

with parameters a1 = 1, b1 = 3, c1 = 1, d1 = 5, Iext1 = 3.1, m = 0,
a2 = 6, τ 2 = 10, Iext2 = 0.45, γ = 0.01, r = 0.00035, s = 4, and
x0 = −2.1 as determined by El Houssaini et al. to simulate a bistable
system between a normal state and refractory status epilepticus.33

This model has five state variables: two describing rapid discharges
at a fast time scale, two describing spike and wave events at a
moderate time scale, and one for the alternation between “normal”
and “ictal” periods on a slow time scale. The Epileptor model has
been used to explain mathematically the genesis and termination
of seizure dynamics in a bistable system, mimicking experimental
findings from different species. To perturb the system dynamics,
we used 3.5 s stimuli, equivalent to the length of one cycle of status
epilepticus, sampled at 1 ms resolution.

For our last model, we examine a cardiac model of reentrant
tachycardia developed by Glass and Josephson34 as defined by

∂v

∂t
= −w − v(v − 0.139)(v − 1) + D

∂2v

∂R2
+ Istim(R),

∂w

∂t
= 0.008(v − 2.54w),

where parameter D represents the diffusion coefficient and Istim(R)
represents the injected current at a specific location. The model
simulates an action potential traveling around a ring geometry of
circumference 2 ×

√
5 cm. The diffusion coefficient is set at 1 cm2/s.

A single pulse stimulus, given within a specific phase region, sup-
presses the depolarizing wave propagating around the ring. We
applied our approach to determine whether a stimulus given at a
single point on the ring could suppress the rotating wave behav-
ior regardless of where the action potential was on the ring. This
model was integrated using an Euler method with dt = 0.1 ms and
dR = 2 ×

√
5 × 0.005 cm. The initial values of the model were calcu-

lated by first creating an action potential at one point on the ring
with D = 0. That action potential was then mapped around the ring,
and the equation was integrated forward in time until the system
stabilized. The values at each point on the ring was then used as
the initial conditions for further computations. The period of one

cycle was 356.1 ms, and we constructed a 356.1 ms stimulus sam-
pled at 0.1 ms resolution. Testing the stimulus at 3561 unique phases
was computationally taxing, and so we examined 356 unique phases,
spread out by 1 ms across one cycle of rotation around the ring.

Stimulus search algorithms

For each of the models described above, novel stimulus wave-
forms were generated and optimized using an extrema-featured
stochastic hill-climbing approach, which we call an “extrema dis-
tortion algorithm” (EDA).35 The algorithm iteratively distorts an
original waveform shape generating a set of new waveforms, tests
each for optimality, and then chooses the best waveform as the start-
ing seed for the next iteration. Multiple, independent initial seeds
enable the algorithm to search for both local and global optima.
To address our question of finding stimulus waveforms that can
open the phase window with energy optimal stimulus waveforms, we
constructed a compound performance metric that simultaneously
(1) minimized stimulus energy and (2) achieved the specified phase
window. In order to guarantee convergence to stimuli that open the
phase window, the algorithm was programmed to penalize deviation
from the phase window with a higher weight over the minimization
of stimulus energy, measured as L2-norm of the amplitude. Once
the desired phase window was achieved, any solution that did not
achieve the desired outcome of success at all phases was penalized
heavily, and novel waveforms were sought that reduced L2-norm.
The energy optimizing search was continued for 1000 iterations.
This entire process was executed ten times with different starting
conditions to generate ten unique solutions.

Two sets of searches were conducted, one set with no con-
straints on the stimulus waveform shape and the second set with
a charge neutrality constraint to mimic current neuromodulation
requirements. Charge neutrality is relatively common in neuro-
modulation practice and research due to concerns that the residual
charge left in the tissue can cause damage.36 The charge-neutrality
constraint was implemented by removing the average DC offset after
each distortion, projecting the distorted stimulus waveform into a
charge-neutral space.

In order to compare our results from arbitrarily shaped wave-
forms to those of traditional biphasic waveforms, we conducted a
grid search across a range of parameters defining both two and three
rectangular pulse configurations. This computationally intensive
process can yield globally optimal configurations under the severe
constraint of biphasic waveforms. We completed an exhaustive
search for the bistable FitzHugh–Nagumo model. For the two-pulse
search, we assumed a 1 ms pulse width and varied the amplitude
of both pulses from −10 to 10 at 0.1 intervals. We varied the gap
between the 0.1 ms intervals, keeping the gap within 1 cycle length
(13.1 ms). For the three-pulse search, we maintained the 1 ms pulse
width assumption and varied the amplitude of the pulses from −4
to 4 at 0.4 intervals. We had to increase the resolution of the search
space for computational purposes. The gaps were varied at 0.1 ms
intervals, with the constraint that the sum of the gaps did not exceed
1 cycle length (13.1 ms). Parameters for the most energy efficient
stimulus were stored for each proportion of phase window opening
out of the 131 phases tested.
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Furthermore, we were interested in understanding how noise
affected phase-agnostic stimulus. Recognizing that biological sys-
tems are often inherently stochastic, we added a zero-mean Gaussian
random process with varying magnitudes of standard deviation
(10−5–10−2) to the x1 state variable in the FitzHugh–Nagumo equa-
tions for study. We ran ten trials at each standard deviation of noise
and the percentage of phase window opening was tracked for each
of the experiments.

RESULTS

Complex waveforms suppress oscillation via a gentle

corralling mechanism

Using EDA, we were able to discover a waveform capable of
suppressing oscillations regardless of the phase at which the stimu-
lus was given, as seen in Fig. 1. As a point of comparison, Fig. 1 also
shows a stimulus whose waveform is optimized to suppress repet-
itive firing with the least amount of energy without the additional
constraint of suppression when given at any phase. We can see that,
compared to the phase-specific stimulus, the optimal phase-agnostic
stimulus is larger and more complex shape. When we examine the
optimal phase-agnostic stimulus waveform, we note that there are
roughly two components: a persistent hyperpolarizing current (pos-
itive stimulation) followed by a sinusoidal waveform with three
peaks. It is important to note that the figures are aligned such that
the stimulus is given at the same time, and the system has been
initialized at different phases. Figure 2 shows the effect of the dif-
ferent portions of the phase-agnostic stimulus on the system from
different start phases. Each of the 131 dots in the figure represents a

unique instance when the stimulus is being given at a different start-
ing phase. At t = 0, these dots are spread out evenly, by time, across
the stable limit cycle in the FitzHugh–Nagumo model.

As can be seen, the persistent current portion of the stimulus
lasts for approximately half of the stimulus length (B). The presence
of the persistent current expands the basin of attraction to encom-
pass the original limit cycle. If the persistent current remained for
perpetuity, all the oscillators will suppress repetitive firing regard-
less of when the stimulus was given. However, because only a limited
duration stimulus is being given, the second half of the stimulus is
necessary. When examining the effect of each of the three sinusoidal
pulses in the second half of the stimulus, we can see that the stimu-
lus is “rolling” up the dots into a tighter ball such that all of them lie
within the original basin of attraction. Each sinusoidal pulse being
given is large enough such that the instances that are soon to leave
the basin of attraction are pushed back in, while small enough such
that the instances that are within the basin do not get pushed out.
The waveform shape is important for efficiently corralling all trajec-
tories into the trapping region, irrespective of the phase of the limit
cycle at which the stimulus was applied.

In our companion article,30 we show that the optimal stimu-
lus to open the phase window in the radial isochron clock model
had a clear corralling interval and a suppressing interval as seen in
Fig. 3. Figure 3 also shows the optimal stimulus as seen in Fig. 2,
but it is plotted using similar metrics of corralling (variation along
the x1 and x2 axes) and suppressing (percent of oscillators within the
basin of attraction of the fixed point) as the radial isochron clock
from the previous paper. As can be seen from this figure, the opti-
mal stimulus in the FitzHugh–Nagumo has overlapping corralling
and suppressing intervals, in contrast to the distinct separation of
the two intervals in radial isochron clock model.

FIG. 1. Optimal phase-agnostic stimulus (bottom left) is capable of suppressing oscillatory behavior (top left) when given at any phase compared to the optimal phase-specific
stimulus (bottom right), which requires the stimulus be given at a specific time in order to suppress oscillatory behavior (top right). The oscillatory behavior of multiple
FitzHugh–Nagumo models each starting at different phases are superimposed on each other for visualization purposes in the top figures. Black trajectories indicate those
that have suppressed, while gray trajectories represent those instances that have not suppressed. Note that the hyperpolarizing stimulus is depicted here as moving in a
positive direction.
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FIG. 2. Example of rhythm suppression of the FitzHugh–Nagumo model by a complex stimulus waveform initiated at different phases of the limit cycle. The stimulus was
optimized by EDA. The independent clocks (orange dots) in state space are shown for specific time points (A, B, C, D, and E). Five different trajectories from five distinct
starting phases are superimposed on each other in the bottom plot. The gray region represents the basin of attraction for the fixed point. Note, the stimulus duration is
equivalent to one cycle length.

FIG. 3. The effect of the stimulus (µ) shown on the variance in x1 and x2 of the clocks (σ
2
x1
and σ 2

x2
), and the percent of oscillators that have been suppressed. The effect

of the stimulus can be broken into two parts: the corralling interval (c) and the suppressing interval (s). Variance values are normalized such that the starting distribution has
a variance of 1. Note, the stimuli durations shown here are equivalent to one cycle length of the underlying system.
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In the field of neuromodulation, charge neutrality is an impor-
tant constraint to prevent tissue damage. Figure 3 also shows the
results of our search process on the FitzHugh–Nagumo system
where the stimulus is constrained to be charge-neutral. It is inter-
esting to note that the second half of the stimulus looks like a
non-charge neutral stimulus in that the sinusoidal pulsing occurs
again. The front half replaces the persistent current with a large neg-
ative pulse. When looking at the effects of the different portions of
the stimulus, we can see that this initial negative pulse corrals the
phases similarly to the persistent current in the no-charge neutral
stimulus. Regardless of what phase the stimulus is given, after the
initial negative pulse, the spread of phases collapses into a smaller
region. Like the non-charge neutral stimulus, once the phases col-
lapse into a smaller region, the repetitive pulsing pushes the system
into the basin of attraction around the stable fixed point.

Rectangular waveform suppress oscillation via a rapid

corralling mechanism

Current neuromodulation devices predominantly use rectan-
gular biphasic waveforms. Our systematic grid search of all biphasic
rectangular waveforms reveals that phase-agnostic waveforms can
be found in this search space as well. Figure 4 shows the optimized

two-pulse and three-pulse rectangular pulses waveform and its effect
on the trajectories when initiated at different phases.

As seen in the two-pulse stimulus, the oscillators are all pushed
far to the left of the FitzHugh–Nagumo stable limit cycle. This
caused a phase reset to occur that shrunk the phase region, allow-
ing the second pulse to quickly knock the oscillators into the basin of
attraction of the fixed point. In the three-pulse stimulus, the first two
pulses of the stimulus are used to corral the oscillators into a small
phase region, allowing the third pulse to quickly knock the oscilla-
tors into the basin of attraction of the fixed point. Because two pulses
are used to corral the phases in the three-pulse stimulus, the amount
of energy required is much smaller (L2-norm of two-pulse is 28.13,
L2-norm of three-pulse is 12). Figure 5 shows the effect of both the
two-pulse and three-pulse stimuli on the variances along both x1 and
x2 axes as well as the percentage of the oscillators that have crossed
into the basin of attraction. As can be seen, the optimized rectan-
gular waveforms first corral the phases together and then induce a
push across the unstable limit cycle into the basin of attraction.

Effect of noise on the phase window

Does the opening of the phase window collapse with noise? In
biology, the same stimulus given each time may potentially yield dif-
ferent results due to the inherent stochastic nature of the system.

FIG. 4. Two-pulse stimulation (top)
requires more energy than three-pulse
stimulation (bottom). In each section,
phase amplitude resetting maps are
shown above each of system’s response
in time and stimuli where the loca-
tions of the independent clocks are
shown in orange dots. The system
responses of multiple instances of the
FitzHugh–Nagumo model, each starting
from a distinct phase, are superimposed
on top of each other for visualization
purposes. Grayed regions represent the
basin of attraction for the stable fixed
point. Note, both stimuli duration are
roughly 0.8-cycle lengths.
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FIG. 5. Findings for optimal two-pulse and three-pulse stimuli (top) also demonstrate that the stimulus can be broken into distinct corralling phase (c) and suppressing phase
(s) as seen in the reduction of variances (second and third row), and the percentage of oscillators successfully suppressed (bottom). Variance values are normalized such
that the starting distribution has a variance of 1. Note, both stimuli duration are roughly 0.8-cycle lengths.

Figure 6 demonstrates that increasing noise in the oscillator’s state
variables indeed diminishes the efficacy of the stimulus in terms of
opening the phase window. Nevertheless, the complex waveform
accesses the trapping region across a wide phase window, suggest-
ing that the existence of an enlarged phase window is not limited to
deterministic systems. It would be interesting to incorporate oscilla-
tor stochasticity in stimulus search to see whether this yields optimal
stimulus waveform solutions that are more robust to noise.

Opening the phase window in more complex models

We next explore the possibility of opening the phase window
for other more complex biological models, particularly those that

FIG. 6. The efficiency of the stimulus decreases as the amount of noise
increases. Noise is added to the x1 state variable of the FitzHugh–Nagumo equa-
tions. The range and distribution of the phase window openings are plotted along
the y axis.

are relevant to medical conditions. As can be seen in Fig. 7, we are
able to also open the phase window using the Suffczynski et al.’s
population-based model of epilepsy.37 We note, however, that we
were unable to successfully open the phase window for the Suffczyn-
ski model with a stimulus duration of one cycle length. When we
increased the stimulus duration to two cycle lengths, we were able to
successfully suppress the oscillatory behavior at any phase.

Interestingly, however, the optimal waveform for the Epilep-
tor model is just two pulses. The oscillatory and complex nature of
the optimal waveforms seen in the FitzHugh–Nagumo and the Suf-
fczynski et al. model is absent in this model. This is explained by the

FIG. 7. Optimal stimulus waveforms designed to open the phase window in the
Suffczynski et al. model (panel a) and the Epileptor model (panel b). In each
panel, the stimulus (bottom) is seen aligned to the system’s response (top). The
asterisks in each panel signify one cycle length. As with our other figures, the sys-
tem’s response in each of these models is superimposed on top of each other for
visualization purposes.
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fact that the Epileptor model has a planar separatrix between nor-
mal behavior and epileptic behavior.33 Unlike the other two models
that have an unstable limit cycle nested within the stable limit cycle,
characteristic of Andronov–Hopf oscillators,31 a stimulus in the
Epileptor model just needs to cross a planar separatrix in order to
transition from one state to the other. Furthermore, the rapid oscil-
latory behavior seen in the EEG equivalent of the Epileptor model
exists largely independent from the dimension that controls state
transitions.

In the cardiac model of reentrant tachycardia, there is a funda-
mental difference in that the action potential is traveling spatially
and not just temporally as we have been examining in the pre-
vious models. Even so, a non-rectangular waveform capable of

FIG. 8. Optimized stimulus waveform designed to open the phase window in the
Glass–Josephson cardiac model. The stimulus (top) is shown affecting eight dis-
tinct Glass–Josephson simulations (represented by distinct colors) at the position
marked by the asterisk. The trajectories of each of the system’s response for
each of these independent simulations are superimposed on each other at various
times marked by letters A–F. Each simulation is designed such that the wavefront
is at a different phase relative to the onset of stimulation. Arrows are provided
above the waves to indicate directionality.

suppressing the rotating wave from a single point source with-
out knowledge of where the wave is spatially, as seen in Fig. 8.
As can be seen from this figure, and the accompanying movie in
the supplement, there are two main wave-generating portions of
the stimuli, one roughly around 50 ms and another around 350 ms.
The first portion annihilates the action potential in more than half
of the instances, while softly resetting the phases of the remain-
ing instances. The second portion then successfully annihilates the
remaining instances with active action potentials.

DISCUSSION

With recent interest in the use of electrical stimulation to cor-
rect aberrant oscillopathies, much of the focus has been on finding
optimal, phase specific, stimuli. This study sought to challenge the
assumption of phase specificity by examining the potential of phase-
agnostic solutions. Using a bistable FitzHugh–Nagumo model, we
were able to gain insights into the mechanisms by which this can
be achieved and examine the use of an extrema distortion algorithm
to find optimal waveforms for other more complex systems as well.
It is interesting to note that the waveform is generally complex and
that simple pulse solutions require much stronger stimulation when
searching for phase-agnostic solutions. When limited to two (or
three) rectangular pulses, the stimulus can be broken into distinct
corralling intervals and suppressing intervals. The first (or sec-
ond) pulse(s) corral the different oscillators into one narrow phase
range, and the final pulse then suppresses all the oscillators. How-
ever, in complex waveforms, as found using our extrema distortion
algorithm, these distinct intervals can overlap, with portions of the
stimulus achieving both corralling and suppressing simultaneously.

Interestingly, we note that the complex waveforms kept the
oscillators closer to the stable limit cycle. Although both the two-
pulse and three-pulse rectangular shaped stimuli corralled the
phases by pushing the oscillators far away from the stable limit
cycle, the complex waveforms generated by EDA kept the oscillators
closer to the stable limit cycle, leveraging the dynamics of the limit
cycle itself to help corral the oscillators together into a tighter phase
window. By leveraging these natural dynamics, complex waveforms
were able to utilize much less energy. It is important to note as we
have seen in the Suffczynski et al. model that the stimulus duration
is important with regards to the success of opening the phase win-
dow. As noted, we were unable to find an optimal phase-agnostic
solution when limited to 1 cycle length. Given what we found in
our companion article,30 this could be due to our search space not
being large enough in examining the amplitudes of the initial condi-
tions, or that the Suffczynski et al. model has internal dynamics that
act on a time scale larger than one cycle length of the mean-field
membrane. Future studies would be needed to better understand
why the phase window could not completely open for the Suffczyn-
ski et al. model when the stimulus duration is limited to one cycle
length as well as what features and dynamics are important to the
determination of the minimum stimulus duration.

The result for the Epileptor model is unique in that the opti-
mal stimulus here was two brief rectangular pulses as opposed to the
more complex waveforms we found for all other systems. On exam-
ination of the state space of the model, we noted that its separatrix
is parallel to the stable limit cycle as opposed to being nested within
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the stable limit cycle as is the case in the FitzHugh–Nagumo model.
Because the separatrix is parallel to the stable limit cycle, the stimu-
lus moving orthogonally is not impacted by the oscillatory nature of
the system, and thus, the timing of the stimulus is not critical. This
finding is important as it indicates that phase-agnostic solutions are
readily available if the separation between the stable states is orthog-
onal to the oscillatory plane, and an appropriate stimulus could be
leveraged that moved accordingly. We note, however, that there is
clinical evidence that rectangular pulses that successfully suppress
epileptic foci in humans are phase dependent.38

The result for the Glass–Josephson model is fascinating, and
more work is required to better understand the dynamics involved.
This model stands apart from the others in that the model describes
oscillations that cycles in time and space. Looking at the results, we
can follow the behavior and effect of the two halves of the stimulus,
but understanding why this particular waveform is optimal requires
further analysis. Cytrynbaum and Patony have proposed the use of
invariant winding number to understand the timing of stimulus pro-
tocols for successful annihilation of traveling pulses, and perhaps
an analysis of these properties may provide new insights into how
phase-agnostic solutions are successfully navigating the dynamical
properties of these systems.39

The search for phase-agnostic stimuli has not been a major
focus of current neuromodulation research. In fact, there is a grow-
ing recognition that phase specificity is a critical component to
increase the efficacy of stimulation under the current paradigm of
rectangular biphasic waveforms.40 The push toward closed-loop sys-
tems, in which the phase of the oscillations is captured and used to
determine the timing of stimulus delivery, is an important direction.
As we have shown in this study, the energy necessary to success-
fully cause suppression at a restricted phase is much smaller than
the energy necessary to successfully cause suppression at all phases.
Yet, given the inherent noisiness of biological systems as well as
the challenge to measure the instantaneous phase of the system, it
may be difficult to deliver phase-specific stimuli. With the results
of this study, a hybrid of the two concepts may be developed such
that opening the phase window may help mitigate the challenges
related to irregularities in the biological oscillations due to noise
and phase tracking difficulties, allowing for increased efficacy. Fur-
thermore, incorporating noise in our search algorithms may yield
more efficient and effective stimulus waveforms. Future work may
discover alternative complex waveforms that are optimized under
noisy conditions.

Of note, the optimal phase-agnostic waveform is much more
complex, with more peaks and valleys, compared to phase-specific
waveforms. While much of the literature in neuromodulatory con-
trol focuses on the use of rectangular pulses, developing more
complex signals is not often considered. Most studies use a train
of rectangular pulses where the shape and parameters for each
pulse are the same. The parameters governing this search space are
often limited to amplitude, duration, frequency, and the number of
pulses. Our study shows that each pulse may have unique charac-
teristics around amplitude and duration, and that the gaps between
pulses may be different. Furthermore, the fundamental shape of
the pulse may hold large opportunities for energy optimization.
These differences may be critical to open the phase window, espe-
cially developing optimal phase-agnostic solutions. Unfortunately,

doing large grid searches across this space when the number of
pulses is unknown, and each pulse having its own unique amplitude
and duration, becomes nearly impossible as the search space grows
exponentially with each parameter. The use of an extrema feature
stochastic search algorithm aids in navigating this search space with
relative efficiency by reducing dimensionality of solutions through
extrema pruning.35

There are limitations to our analysis. First, we recognize that
we are using discretized phases and that this work was done using
numerical approximations. We do not have a closed form solu-
tion for phase-agnostic suppression of oscillatory behavior, and it
is possible that under slightly different phase conditions, the opti-
mal stimulus found would not be successful. While it is possible to
include more phases into the search process to increase the likeli-
hood that the optimal solution works for every phase, that would
come at a cost of computational time. Further research may pro-
vide us with the mathematical framework for finding such optimal
stimuli, as opposed to depending on the accuracy of numerical
approximations from in silico experiments.

While the applications seen here have been applied only in
mathematical models, we believe that the methodologies in place
could potentially make their way into clinical practice. Although
there is still much to be done before such systems could poten-
tially learn in real-time the optimal waveforms in patients, the field
of computational modeling has made significant advances in recent
years. For example, in epilepsy, there are studies currently exploring
the use of dynamical computational models coupled with patient
data (e.g., structural and functional connectivity matrices deter-
mined from imaging studies) to identify optimal treatments and
to predict surgical outcomes.41,42 The combination of the methods
developed in our work combined with patient-specific computa-
tional models of disease states may provide clinicians in the future
with ways to develop individually tailored optimal waveforms for
improving patient outcomes.

SUPPLEMENTARY MATERIAL

See the supplementary material for the animation of the effect
of the stimulus on the Glass–Josephson model.
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